Range - preserving AE ( 0 ) - spaces

نویسنده

  • A. W. Hager
چکیده

All spaces here are Tychonoff spaces. The class AE(0) consists of those spaces which are absolute extensors for compact zero-dimensional spaces. We define and study here the subclass AE(0), consisting of those spaces for which extensions of continuous functions can be chosen to have the same range. We prove these results. If each point of T ∈ AE(0) is a Gδ-point of T , then T ∈ AE(0) . These are equivalent: (a) T ∈ AE(0); (b) every compact subspace of T is metrizable; (c) every compact subspace of T is dyadic; and (d) every subspace of T is AE(0). Thus in particular, every metrizable space is an AE(0)space. 2010 MSC: Primary 54C55. Secondary 06F20, 46E10, 54E18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Common fixed point results for graph preserving mappings in parametric $N_b$-metric spaces

In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of graph preserving mappings in parametric $N_b$-metric spaces. As some consequences of this study, we obtain several important results in parametric $b$-metric spaces, parametric $S$-metric spaces and parametric $A$-metric spaces. Finally, we provide some illustrative examples to ...

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

ISOMETRY ON LINEAR n-NORMED SPACES

This paper generalizes the Aleksandrov problem, the Mazur–Ulam theorem and Benz theorem on n-normed spaces. It proves that a one-distance preserving mapping is an nisometry if and only if it has the zero-distance preserving property, and two kinds of n-isometries on n-normed spaces are equivalent.

متن کامل

Linear Orthogonality Preservers of Standard Operator Algebras

In 2003, Araujo and Jarosz showed that every bijective linear map θ : A → B between unital standard operator algebras preserving zero products in two ways is a scalar multiple of an inner automorphism. Later in 2007, Zhao and Hou showed that similar results hold if both A,B are unital standard algebras on Hilbert spaces and θ preserves range or domain orthogonality. In particular, such maps are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013